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Abstract

This paper describes a full-wave analysis of MICs
in a multilayer dielectric media in a rectangular
waveguide. The analysis combines the Spectral Do-
main approach with residue theory and the con-
tour integration method to accurately evaluate the
impedance matrix of the method of moments.

1 INTRODUCTION

A variety of techniques have been used to analyze Microwave
Integrated Circuits (MICs) [1]. Although very accurate, ap-
plication of fuil-wave techniques using Method of Moments
(MoM) are often time consuming. Recently an effort has
been made to overcome this difficulty, allowing for such an
analysis to be quickly performed on CAD packages. For ex-
ample, when analyzing boxed MICs, 2-D FFT algorithms
have been used [3] to evaluate the doubly infinite summa-
tions in the moment matrix. It makes the SDA very efficient
but limited to structures with identical segment dimensions.
In this work we present a full-wave analysis of planar MIC
in a multilayer dielectric media in a rectangular waveguide.
It uses the Spectral Domain approach and the elements of
moment matrix are evaluated by subtracting a conveniently
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Figure I: Cross-section of the Waveguide.

modified asymptotic limit of its integrand. The integral of
the limit is obtained using residue theory and the contour
integration method, resulting in a faster and more accurate
procedure. The Matrix Pencil technique [4] is used later for .
obtaining the S-parameters of the given circuit.

2 FORMULATION

The cross-section of the waveguide is shown in Figure 1. All
metals are assumed to be perfect conductors, and a time
variation of e/ is assumed and suppressed. Each layer
consists of a homogeneous, isotropic and lossless dielectric
characterized by its permittivity (¢;) and permeability (1)

Suppose that an arbitrary surface current distribution
exists at the dielectric interfaces. The electromagnetic fields
in each layer can be expressed in terms of the y-components
of the vector potentials (A, and F,). The Green’s func-
tions for the vector potentials are obtained by imposing the
boundary conditions at the dielectric interfaces. The inte-
gral equation of the problem arises from the the boundary
conditions on the surface of the circuit (S), supposing the
presence of an incident field E™. The currents are expanded
in rooftop basis functions which are also used as weighting
functions, resulting in a Galerkin formulation.

The first numerical problem arises from the poles of the

integrand, and it is overcome by subtracting the singularity
from the integrand, and analytically evaluating the remain-
ing singular integral. The second and more troublesome
problem when evaluating the elements of matrix [Z] is due
to the slow convergence of the summation and integrals,
specially for the case when source and testing functions are
in the same interface. The evaluation of the impedance ma-
trix becomes computationally expensive, and its accuracy
is endangered by the oscillatory nature of the integrands.
To overcome this limitation, the limit of the integrand, as

k? 4+ a2 goes to infinity, is added and subtracted to the

original integrand:
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Now, the integral in Z.:m,m, can be evaluated quickly
as the integrand converges asymptotically to zero. The con-
vergence problems of Z,, have been isolated in Lrzm m,,
which will be evaluated analytically. A basic procedure for
evaluating integrals on the real axis, is to close the contour
 with a semi-circle of infinity radius (Cw), and to use the

residue theory. In our case, the limit above has two branch-
cuts, with branch-points at k, = +jan, first order poles
at k, = £ja,, and a higher order pole at k. = 0. Geo-
metrically the limiting case represents a multilayer media
with the layers | and 3 extending to y = oo and —oo, re-
" spectively. Those branch cuts account for the corresponding
radiation in this now open structure. But physically they
have no meaning to the original problem. We can avoid the
branch-cut integrations and the higher order pole by chang-
ing the limit of the integrand (Int,. and Int},) according
to the following substitutions:

1 : tanh(y/k? + a2) . (3)
——— —

k2 + o2 R+ e?

o,

k? kZ + (rm/a)?

The integration around the branch cut is substituted by
a summation of residues, and the higher order pole at k. = 0
is substituted by first order poles at k, = +jrx/a. It should
e stressed that these modifications do not alter the limit,
as the hyperbolic tangent converges rapidly to 1, and 7 < 1.
L.. (2) can now be written as a combination of the inte-
grals which are easily evaluated by contour integration and
residue theorem. As a result L.. is expressed by exponen-
tially decaying summations unless d = 0. In this case the
summations need to be evaluated only once, and their val-
ues stored for future reference. A very similar procedure is
used for the elements of the submatrices Z,, and Z,..

The advantage of the procedure described is to limit the
amount of numerical integration performed by drastically
improving the behavior of the integrand. Furthermore, the
limit of the integrand is reached when (/a2 + k2 goes to oco.
I'his means that as we increase n in the summation of the
clements of matrix [Z] the numerical integration needs to
be performed over a decreasing interval length. The overall
effect is a combination of an increase in the accuracy of the
clements of the impedance matrix, and substantial savings
in computational time spent to fill out the matrix [Z).

3 EXAMPLES

As an example consider the a microstrip gap with overlay
half-wave resonator as shown in Figure 2. The parasitic res-
onator is placed symmetrically over the gap, with the same
width of the transmission line. The magnitude of the re-
flection and transmission coeflicients are shown in Figure 3,
together with numerical results and measurements obtained
by Yeung [5] for the case of an open multilayered structure.
It is observed that the resonance frequency shifts slightly
towards 4 GHz.

As a second example consider the coupled microstrip fil-
ter shown in Figure 4. The magnitude of the transmission
coefficient is shown in Figure 5. It is compared with mea-
surements and theoretical results obtained by Shibata [6]
for the open microstrip case, and with theoretical results
for the filter inside a cavity, obtained by Railton [3]. It can
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Figure 3: Magnitude of 511 and 521 for the Microstrip gap
with overlay resonator. a = b = 20 mm, A = 0.8382 mm,
€1 = 1., € = €3 = 2.33, w = 2.3 mm, g = 1.0 mm,
L =273 mm.
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IFigure 5: Magnitude of $21 for the Coupled Microstrip Fil-
ter. @ = 1162 mm, b = 16 mm, h = w = G = 1.272 mm,

¢p = 10, L = 12.72 mm.

he noted a shift of 0.1 GHz between the shielded cases and

the open one.

Figure 6 shows an example of coupling hetween two
transmission lines at different dielectric interfaces, overlap-
ping for a distance d. Figure 7 shows the magnitude of
the transmission coefficient as a function of d (negative d
means that the lines are apart) at a frequency of 10 GHz.
The results are compared with those obtained by Schwab
and Menzel [7] for the case when the coupling is housed in
a rectangular cavity. There is a very good agreement, and
the coupling presents a wide range depending on the over-

tapping distance d.
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Figure 6: Transmission Line Coupling.
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Figure 7: Magnitude of S21 for the Transmission Line Cou-
pling. a = b= 5 mm, hy = ha = 2.373 mm, h, = 0.254 mm,
€1 =¢e3=1, e,g =22, w= 175 mm, f =10 GHz.

4 CONCLUSION

This work has presented a full-wave analysis of MIC in mul-
tilayer dielectric media in a rectangular waveguide. It shows
a procedure that permits an accurate and faster numerical
evalualion of the moment matrix, without the limitations of
FFT routines, as previously described. Results have been
compared with previously published data and a good agree-

ment is observed.
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