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Abstract

This paper describes a.full-wave analysis of MICS

in a IIlultilayer dielectric media, in a. rectangular

waveguide. The analysis combines the Spectral Do-

main approach with resirfue theory and the con-

tour integration method to accurately evaluate the

impedance matrix of the method of moments.

1 INTRODUCTION

A variety of tteclllliqlles have been IIsed to analyze Microwave

[ llt.egra.ted Circuits (M ICS) [1]. Altllougll very accurate,. a.p-

piication of fui]-wa.ve techniques using Mei}lod of h40ments

(MoM ) are often time consuming. Recently an effort has

lmell made to overcome this difficulty, allowing for such an

analysis to be quickly performed on CAD packages. For ex-
a,rnl>le, When analyzing boxed MICS, 2-D FFT algorithms

Itave been used [3] to evaluate the doubly infinite summa-

tioils in tile moment matrix. It makes the SDA very efficient

I)llt limitmf to structures with identical segment dimensions.

III this work we present a full-wave analysis of planar MIC

ill a. rnilltilayer dielectric media. in a. rectangular waveguirle.

It IIses tile Spectral Donla.in approactl arid the elements of

mome~lt matrix are evaluated by subtracting a conveniently
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Figure 1: Cross-sectio]l of tile Wa.veguide.

modified asymptotic

the limit is obtained

limit of its integrand, The integral of

using residue theory and the contour

integration method, resulting in a faster and more accurate

procedl]re. The Matrix Pencil technique [4] is used later for

obtaining the S-parameters of the given circuit.

2 FORMULATION

The cross-section of the waveguide is shown in Figure 1. All

metals are assumed to be perfect conductors, and a time

variation of e~w: is assumed and suppressed. Each layer

consists of a homogeneous, isotropic and lossless dielectric

characterized by %s perm,i$tivity (ei)- and per-meability (pi).

Suppose that an arbitrary surface current distribution
exists at the dielectric interfaces. The electromagnetic fields

in each layd””can be expressed in terms of the y-components

of the vector potentials ( Ag and Fw). The Green’s func-
tions for the vector potentials are obtained by imposing the

boundary conditions at the dielectric interfaces. The inte-

gral equation of the problem arises from the the boundary

conditiolw on the surface’ of the circuit. (S), supposing the

presence of an incident field Ein. The Currents are expanded

in rooftop basis functions which are also used as weighting
functions, resulting in a Galerkin formulation.

The first numerical problem arises from the poles of the

integra.nd, and it is overcome by subtracting the singularity

from the i ntegrand, and analytically evaluating the remain-

ing singular integral. The second and more troublesome

problem when evaluating the elements of matrix [Z] is due

to the slow convergence of the summation and integrals,

specially for the case when source and testing functions are

in the same interface. The evaluation of the impedance ma-

trix becomes cornputationally expensive, and its accuracy

is endallrzered bv the oscillatory nature of the integrands.

To overcome thins limitation, tile limit of the integrand, as

F
k2 + ~y~ goes to infinity, is added and subtracted k) the

original iIltegrand:
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where:

JLiz,,,,,,,. = * Ii m Int,,dkz
-~ -..

(2)

NOW, the integral in z,,~j,~. can be evaluated qllickly

as tl}e illt.egrand converges ”asymptoticallyto zero. The con-

vergence problems of 2== have been isolated in .Lz~f~,.,

which will be evaluated analytically. A basic procedure for

evaluating integrals on the real axis, is to close the contour

witil a. semi-circle of infinity radius (Cm), and to use the

residue tllcory. In our case, the limit above has two bra.nch-

cut,s, with bra.ncll-points at k, = +ja~, first order poles

at k. = +jcr,,, and a higher order pole at k= = O. Geo-

metrically the limiting case represents a multi layer media

with the layers 1 and 3 extending to y = co and —co, re-

spectively. Those bra.llch cuts account for the corresponding

radiatjioll ill this now open structure. But physically they

have 110 nleaning to the original problem. We can avoid the

hrarlcll-c.(lt integrations and the higher order pole by chang-

ing tlic lill~it of the illtegrand (lnt=z and lnt~=) according

to tlie Iollowing sllbstitutiolls:

tan.h( ~m)

‘-–- “ R&

(3)

la

1 1

g + kg + (rn/a)2
r<l (4)

TIIC i[ltegration around the branch cut is substituted by

a sl]lnma.t, ion of residues, al]d t,lle Iligher order pole a.t kz = O

is sllbstituted by first order poles at kz = +jrT/rz. It should

Iw stressed that these modifications do not alter the limit,

as tile hyperbolic tangent converges rapidly to 1, and r- < 1.

L,z (2) can now be written as a combination of the inte-

grals which are easily evaluated by contour integration and

residue theorem. As a result Lzz is expressed by exponen-

tially decaying summations unless d = O. In this case the

summations need to be evaluated only once, and their val-
llrs stored for future reference. A very similar procedure is

~lsed for tile elelnellts of the submatrices 2== and Zzr.

‘1’l\e advantage of the procedure described is to limit tl]e

a!]}oullt, of nllmerical integration performed by drastically

illlproving tile behavior of the integrand. Furthermore, the

FIilllit of llIe il}tlcgral}d is reacllc(l when ~~ + ~~ g~~s to ~.

‘1’llis Ineans tlla(, as we increase 77 in tllr’ summation of tile

elements of mat,rix [’Z] the numerical integration needs to

I)(I \)erforllleC{ over a decreasing irlterval length. The overall

t’lfect is a Coml)illatioll of an increase in tile accuracy of the
Cle IIICIItS of t,llc illll)eda,l)ce mat, rix, and substantial savings

ill C.(>llll)(ltatiollal tilne .sI)ellt, to fill ollt the matrix [Z].

3 EXAMPLES

As an example consider the a microstrip gap with overlay

half-wave resonator as shown in Figure 2. The parasitic res-

onator is placed symmetrically over the gap, with the same

width of the transmission line. The magnitude of the re-

flection and transmission coefficients are shown in Figure 3,

together with numerical results and measurements obtained

by Yeung [5] for the case of an open multilayered structure.

It is observed that the resonance frequency shifts slightly

towards 4 GHz.

As a second example consider the coupled microstrip fil-
ter shown in Figure 4. The magnitude of the transmission

coefficient is shown in Figure 5. It is compared with mea-

surements and theoretical results obtained by Shibata [6]

for the open microstrip case, and with theoretical results

for the filter inside a cavity, obtained by Railton [3]. It can
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Figure 2: Microstrip gap’ with overlay half-wave resonator.~.....
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Figure 3: Magnitude ofS11 and S21 for the Microstrip gap

with overlay resonator. a = b = 2(I mm, h = 0.8382 mm,

f,l = I., e,z = c,3 = 2.33, w = 2.3 mm, g = lo mm,

L = 27.:i mm.
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Figure 4: Coupled Microstrip Filter.
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Figure 6: Transmission Line Coupling.

I & h II I 1, I

_ This Formulatlcm I

/

-30 - ,’ 3
-- Raltlon (cavity)

/’

-35 -/’
-,-, Shlba!a (open)

+ Measurements (open)

-40’ ‘
3 4 5 6 7 8 9

frequency (GHz)

Ipigllre 5: Nagllitudc 01 !52 I for tile CoIIpled Microstrip Fil-

1{’r. a = 11.62 ]1)11), L = 10 mln, h = w = G’ = 1.27’2 mln,

C. = lo, L = 1’2.72 111111.

Iw l)ole(l a sllilt of 0.1 Gllz Ltetweel) tile shielded cases and

ltlle opel] one.

Irigllre 6 slIows al} examl)lc 01 coupli!lg hetwcen two

lrallslllissioll Iirlm at (Iilfrrm)t, dielectric interfaces, overlap-

lJillg for a distjalice d. Figure 7 sl)ows the magnitude of

tlIe tra.rlsnlissiol) coefficient as a fllnction of d (negative d

!Ileitlis tlIattlI(’Iillrs are apart) at a. frequency of 10 GIIz.

‘1’11,1r(’slllts are coll]l)ard wit II tliose ol)tained by Scllwah
ail(l M(.tIzcl [’i] lbr tlIc case WIIeII t,lle collplillg is Iiouse{l in

a rm:t. aflgttlar cavity. Tllerc is a very good agreement, and

ttic coul)lil)g presents a wide range depending on the over-

Iapl)ii]g (Iistance d.
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Figure 7: Magnitllde of S21 for the Transmission Line Cou-

pling. a = b = 5 mm, Itl = h~ = 2.373 mm, hz = 0.254 mm,

e,l = e,3 = 1, e,2 = 2.2, w = 1.75 mm, ~ = 10 GIIz.

4 CONCLUSION

This work has presented a full-wave analysis of N41C in mul-

tilayer dielectric media in a rectangular waveguirfe. It shows

a proceclllre that, permits an accurate ancl faster numerical
evaluat, ion of the moment matrix, without tile Iimitat, ions of

FFT routil]es, as previously described. Results have IIeen
compared with previously published data and a good agree-

ment is observed.
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